Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Negl Trop Dis ; 17(12): e0011815, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38096317

RESUMO

BACKGROUND: Onchocerca volvulus is a filarial parasite that is a major cause of dermatitis and blindness in endemic regions primarily in sub-Saharan Africa. Widespread efforts to control the disease caused by O. volvulus infection (onchocerciasis) began in 1974 and in recent years, following successful elimination of transmission in much of the Americas, the focus of efforts in Africa has moved from control to the more challenging goal of elimination of transmission in all endemic countries. Mass drug administration (MDA) with ivermectin has reached more than 150 million people and elimination of transmission has been confirmed in four South American countries, with at least two African countries having now stopped MDA as they approach verification of elimination. It is essential that accurate data for active transmission are used to assist in making the critical decision to stop MDA, since missing low levels of transmission and infection can lead to continued spread or recrudescence of the disease. METHODOLOGY/PRINCIPAL FINDINGS: Current World Health Organization guidelines for MDA stopping decisions and post-treatment surveillance include screening pools of the Simulium blackfly vector for the presence of O. volvulus larvae using a PCR-ELISA-based molecular technique. In this study, we address the potential of an updated, practical, standardized molecular diagnostic tool with increased sensitivity and species-specificity by comparing several candidate qPCR assays. When paired with heat-stable reagents, a qPCR assay with a mitochondrial DNA target (OvND5) was found to be more sensitive and species-specific than an O150 qPCR, which targets a non-protein coding repetitive DNA sequence. The OvND5 assay detected 19/20 pools of 100 blackfly heads spiked with a single L3, compared to 16/20 for the O150 qPCR assay. CONCLUSIONS/SIGNIFICANCE: Given the improved sensitivity, species-specificity and resistance to PCR inhibitors, we identified OvND5 as the optimal target for field sample detection. All reagents for this assay can be shipped at room temperature with no loss of activity. The qPCR protocol we propose is also simpler, faster, and more cost-effective than the current end-point molecular assays.


Assuntos
Volvo Intestinal , Onchocerca volvulus , Oncocercose , Simuliidae , Animais , Humanos , DNA Mitocondrial , Ivermectina/uso terapêutico , Onchocerca/genética , Onchocerca volvulus/genética , Oncocercose/tratamento farmacológico , Simuliidae/parasitologia
2.
J Allergy Clin Immunol Glob ; 2(4): 100131, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37781651

RESUMO

Background: The immunologic mechanisms underlying pulmonary type 2 inflammation, including the dynamics of eosinophil recruitment to the lungs, still need to be elucidated. Objective: We sought to investigate how IL-13-producing TH2 effector cells trigger eosinophil migration in house dust mite (HDM)-driven allergic pulmonary inflammation. Methods: Multiparameter and molecular profiling of murine lungs with HDM-induced allergy was investigated in the absence of IL-13 signaling by using IL-13Rα1-deficient mice and separately through adoptive transfer of CD4+ T cells from IL-5-deficient mice into TCRα-/- mice before allergic inflammation. Results: We demonstrated through single-cell techniques that HDM-driven pulmonary inflammation displays a profile characterized by TH2 effector cell-induced IL-13-dominated eosinophilic inflammation. Using HDM-sensitized IL-13Rα1-/- mice, we found a marked reduction in the influx of eosinophils into the lungs along with a significant downregulation of both CCL-11 and CCL-24. We further found that eosinophil trafficking to the lung relies on production of IL-13-driven CCL-11 and CCL-24 by fibroblasts and Ly6C+ (so-called classical) monocytes. Moreover, this IL-13-mediated eotaxin-dependent eosinophil influx to the lung tissue required IL-5-induced eosinophilia. Finally, we demonstrated that this IL-13-driven eosinophil-dominated pulmonary inflammation was critical for limiting bystander lung transiting Ascaris parasites in a model of allergy and helminth interaction. Conclusion: Our data suggest that IL-5-dependent allergen-specific TH2 effector cell response and subsequent signaling through the IL-13/IL-13Rα1 axis in fibroblasts and myeloid cells regulate the eotaxin-dependent recruitment of eosinophils to the lungs, with multiple downstream consequences, including bystander control of lung transiting parasitic helminths.

3.
J Infect Dis ; 228(7): 936-943, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37243712

RESUMO

Mass drug administration programs targeting filarial infections depend on diagnostic tools that are sensitive and specific. The coendemicity of Loa loa with other filarial species often hampers the control programs. LL2634 was identified as the most promising target among several highly repeated targets, with sensitivity between 500 ag and 1 fg of genomic DNA. Using DNA from infected individuals, LL2643 quantitative polymerase chain reaction (qPCR) was positive in all individuals. LL2643 was detected in plasma-derived circulating cell-free DNA (ccfDNA) from 48 of 53 microfilariae-positive patients. Detection of ccfDNA in urine was possible, but it occurred rarely among those tested. Importantly, LL2643 ccfDNA became undetectable within 1 month following diethylcarbamazine (DEC) treatment and remained negative for at least a year. LL2643 offers a more sensitive and specific target for detection of L. loa infection and would be easily configurable to a point-of-contact assay. Clinical Trials Registration. NCT00001230 and NCT00090662.


Assuntos
Loíase , Animais , Humanos , Loíase/diagnóstico , Técnicas de Amplificação de Ácido Nucleico , Dietilcarbamazina , Loa/genética , DNA
4.
Front Immunol ; 14: 1102344, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36949937

RESUMO

Parasitic nematodes responsible for filarial diseases cause chronic disablement in humans worldwide. Elimination programs have substantially reduced the rate of infection in certain areas, but limitations of current diagnostics for population surveillance have been pointed out and improved assays are needed to reach the elimination targets. While serological tests detecting antibodies to parasite antigens are convenient tools, those currently available are compromised by the occurrence of antibodies cross-reactive between nematodes, as well as by the presence of residual antibodies in sera years after treatment and clearance of the infection. We recently characterized the N-linked and glycosphingolipid derived glycans of the parasitic nematode Brugia malayi and revealed the presence of various antigenic structures that triggered immunoglobulin G (IgG) responses in infected individuals. To address the specificity of IgG binding to these glycan antigens, we screened microarrays containing Brugia malayi glycans with plasma from uninfected individuals and from individuals infected with Loa loa, Onchocerca volvulus, Mansonella perstans and Wuchereria bancrofti, four closely related filarial nematodes. IgG to a restricted subset of cross-reactive glycans was observed in infection plasmas from all four species. In plasma from Onchocerca volvulus and Mansonella perstans infected individuals, IgG binding to many more glycans was additionally detected, resulting in total IgG responses similar to the ones of Brugia malayi infected individuals. For these infection groups, Brugia malayi, Onchocerca volvulus and Mansonella perstans, we further studied the different IgG subclasses to Brugia malayi glycans. In all three infections, IgG1 and IgG2 appeared to be the major subclasses involved in response to glycan antigens. Interestingly, in Brugia malayi infected individuals, we observed a marked reduction in particular in IgG2 to parasite glycans post-treatment with anthelminthic, suggesting a promising potential for diagnostic applications. Thus, we compared the IgG response to a broad repertoire of Brugia malayi glycans in individuals infected with various filarial nematodes. We identified broadly cross-reactive and more specific glycan targets, extending the currently scarce knowledge of filarial nematode glycosylation and host anti-glycan antibody response. We believe that our initial findings could be further exploited to develop disease-specific diagnostics as part of an integrated approach for filarial disease control.


Assuntos
Brugia Malayi , Filariose , Humanos , Animais , Anticorpos Anti-Helmínticos , Antígenos , Imunoglobulina G
5.
PNAS Nexus ; 1(4): pgac184, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36246151

RESUMO

Interleukin (IL)-10 is the primary cytokine driving the modulation of the host response in filarial infections. We performed binding assays with Brugia malayi antigen extracts and human IL-10R1. Bm5539 was the top-binding hit. We identified a short sequence, termed truncated Bm5339, that has structural similarities to the human IL-10 functional dimer. Sequence comparisons revealed that other filarial parasites possess Bm5539 orthologues. Using recombinant Bm5539 in a modified Luciferase Immunoprecipitation System assay, we confirmed that both the truncated and full-length forms of the protein can bind to human IL-10R1. Truncated Bm5539 could inhibit human IL-10-driven phosphorylation of STAT3, thereby demonstrating that Bm5539 acts as an IL-10 antagonist, most likely through competitive binding to the receptor. We provide a structural basis for these observations using computational modeling and simulations. This parasite-encoded cytokine receptor antagonist provides an additional lens through which parasite-induced modulation of the host immune response can be examined.

6.
Infect Immun ; 90(5): e0031721, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35467360

RESUMO

A molecule we termed Brugia malayi IL-5 receptor (IL-5R) binding protein (BmIL5Rbp; also known as Bm8757) was identified from B. malayi filarial worms and found to inhibit human interleukin-5 (IL-5) binding to its human receptor competitively. After the expression and purification of a recombinant BmIL5Rbp and generation of BmIL5Rbp-specific rabbit antibody, we localized the molecule on B. malayi worms through immunohistochemistry and immunoelectron microscopy. RNA interference (RNAi) was used to inhibit BmIL5Rbp mRNA and protein production. BmIL5Rbp was shown to localize to the cuticle of Brugia malayi and to be released in its excretory/secretory products. RNAi inhibited BmIL5Rbp mRNA production by 33%, reduced the surface protein expression by ~50%, and suppressed the release of BmIL5Rbp in the excretory/secretory products. RNAi has been used successfully to knock down the mRNA and protein expression of BmIL5Rbp in the early larval stages of B. malayi and provided a proof of principle for the local inhibition of the human IL-5R. These findings provide evidence that a parasite-encoded IL-5R antagonist may locally inhibit a vital host innate immune activation of IL-5 on eosinophils.


Assuntos
Brugia Malayi , Animais , Brugia Malayi/genética , Interleucina-5/genética , Interferência de RNA , RNA Mensageiro/metabolismo , Coelhos , Receptores de Interleucina-5/genética , Receptores de Interleucina-5/metabolismo
7.
mBio ; 13(3): e0374221, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35475643

RESUMO

Lymphatic filariasis is a debilitating disease that afflicts over 70 million people worldwide. It is caused by the parasitic nematodes Wuchereria bancrofti, Brugia malayi, and Brugia timori. Despite substantial success, efforts to eliminate LF will likely require more time and resources than predicted. Identifying new drug and vaccine targets in adult filariae could help elimination efforts. This study's aim was to evaluate intestinal proteins in adult Brugia malayi worms as possible therapeutic targets. Using short interfering RNA (siRNA), we successfully targeted four candidate gene transcripts: Bma-Serpin, Bma-ShTK, Bma-Reprolysin, and Bma-LAD-2. Of those, Bma-LAD-2, an immunoglobulin superfamily cell adhesion molecule (IgSF CAM), was determined to be essential for adult worm survival. We observed a 70.42% knockdown in Bma-LAD-2 transcript levels 1 day post-siRNA incubation and an 87.02% reduction in protein expression 2 days post-siRNA incubation. This inhibition of Bma-LAD-2 expression resulted in an 80% decrease in worm motility over 6 days, a 93.43% reduction in microfilaria release (Mf) by day 6 post-siRNA incubation, and a dramatic decrease in (4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction. Transmission electron microscopy revealed the loss of microvilli and unraveling of mitochondrial cristae in the intestinal epithelium of Bma-LAD-2 siRNA-treated worms. Strikingly, Bma-LAD-2 siRNA-treated worms exhibited an almost complete loss of pseudocoelomic fluid. A luciferase immunoprecipitation system assay did not detect anti-Bma-LAD-2 IgE in the serum of 30 LF patients, indicating that LF exposure does not result in IgE sensitization to this antigen. These results indicate that Bma-LAD-2 is an essential protein for adult Brugia malayi and may be an effective therapeutic target. IMPORTANCE Brugia malayi is a parasitic nematode that can cause lymphatic filariasis, a debilitating disease prevalent in tropical and subtropical countries. Significant progress has been made toward eliminating the disease. However, complete eradication may require new therapeutics such as drugs or a vaccine that kill adult filariae. In this study, we identified an immunoglobulin superfamily cell adhesion molecule (Bma-LAD-2) as a potential drug and vaccine candidate. When we knocked down Bma-LAD-2 expression, we observed a decrease in worm motility, fecundity, and metabolism. We also visualized the loss of microvilli, destruction of the mitochondria in the intestinal epithelium, and loss of pseudocoelomic fluid contents after Bma-LAD-2 siRNA treatment. Finally, we demonstrated that serum from filaria-infected patients does not contain preexisting IgE to Bma-LAD-2, which indicates that this antigen would be safe to administer as a vaccine in populations where the disease is endemic.


Assuntos
Brugia Malayi , Moléculas de Adesão Celular , Filariose Linfática , Proteínas de Helminto , Animais , Brugia Malayi/genética , Adesão Celular , Moléculas de Adesão Celular/genética , Filariose Linfática/tratamento farmacológico , Proteínas de Helminto/genética , Humanos , Imunoglobulina E/sangue , RNA Interferente Pequeno/genética
8.
PLoS Pathog ; 17(3): e1009337, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33651853

RESUMO

The establishment of type 2 responses driven by allergic sensitization prior to exposure to helminth parasites has demonstrated how tissue-specific responses can protect against migrating larval stages, but, as a consequence, allow for immune-mediated, parasite/allergy-associated morbidity. In this way, whether helminth cross-reacting allergen-specific antibodies are produced and play a role during the helminth infection, or exacerbate the allergic outcome awaits elucidation. Thus, the main objective of the study was to investigate whether house dust mite (HDM) sensitization triggers allergen-specific antibodies that interact with Ascaris antigens and mediate antibody-dependent deleterious effects on these parasites as well as, to assess the capacity of cross-reactive helminth proteins to trigger allergic inflammation in house dust mite presensitized mice. Here, we show that the sensitization with HDM-extract drives marked IgE and IgG1 antibody responses that cross-react with Ascaris larval antigens. Proteomic analysis of Ascaris larval antigens recognized by these HDM-specific antibodies identified Ascaris tropomyosin and enolase as the 2 major HDM homologues based on high sequence and structural similarity. Moreover, the helminth tropomyosin could drive Type-2 associated pulmonary inflammation similar to HDM following HDM tropomyosin sensitization. The HDM-triggered IgE cross-reactive antibodies were found to be functional as they mediated immediate hypersensitivity responses in skin testing. Finally, we demonstrated that HDM sensitization in either B cells or FcγRIII alpha-chain deficient mice indicated that the allergen driven cell-mediated larval killing is not antibody-dependent. Taken together, our data suggest that aeroallergen sensitization drives helminth reactive antibodies through molecular and structural similarity between HDM and Ascaris antigens suggesting that cross-reactive immune responses help drive allergic inflammation.


Assuntos
Poeira/imunologia , Hipersensibilidade/imunologia , Pyroglyphidae/imunologia , Animais , Antígenos de Dermatophagoides/imunologia , Proteínas de Helminto/imunologia , Imunoglobulina E/imunologia , Imunoglobulina G/imunologia , Camundongos , Proteômica
9.
PLoS Negl Trop Dis ; 15(1): e0008884, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33411714

RESUMO

We have previously shown that the microfilarial (mf) stage of Brugia malayi can inhibit the mammalian target of rapamycin (mTOR; a conserved serine/threonine kinase critical for immune regulation and cellular growth) in human dendritic cells (DC) and we have proposed that this mTOR inhibition is associated with the DC dysfunction seen in filarial infections. Extracellular vesicles (EVs) contain many proteins and nucleic acids including microRNAs (miRNAs) that might affect a variety of intracellular pathways. Thus, EVs secreted from mf may elucidate the mechanism by which the parasite is able to modulate the host immune response during infection. EVs, purified from mf of Brugia malayi and confirmed by size through nanoparticle tracking analysis, were assessed by miRNA microarrays (accession number GSE157226) and shown to be enriched (>2-fold, p-value<0.05, FDR = 0.05) for miR100, miR71, miR34, and miR7. The microarray analysis compared mf-derived EVs and mf supernatant. After confirming their presence in EVs using qPCR for these miRNA targets, web-based target predictions (using MIRPathv3, TarBAse and MicroT-CD) predicted that miR100 targeted mTOR and its downstream regulatory protein 4E-BP1. Our previous data with live parasites demonstrated that mf downregulate the phosphorylation of mTOR and its downstream effectors. Additionally, our proteomic analysis of the mf-derived EVs revealed the presence of proteins commonly found in these vesicles (data are available via ProteomeXchange with identifier PXD021844). We confirmed internalization of mf-derived EVs by human DCs and monocytes using confocal microscopy and flow cytometry, and further demonstrated through flow cytometry, that mf-derived EVs downregulate the phosphorylation of mTOR in human monocytes (THP-1 cells) to the same degree that rapamycin (a known mTOR inhibitor) does. Our data collectively suggest that mf release EVs that interact with host cells, such as DC, to modulate host responses.


Assuntos
Brugia Malayi/metabolismo , Regulação para Baixo , Vesículas Extracelulares/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Brugia Malayi/imunologia , Proteínas de Ciclo Celular/metabolismo , Células Dendríticas/imunologia , Filariose/imunologia , Humanos , MicroRNAs/metabolismo , Microfilárias/imunologia , Monócitos/metabolismo , Fosforilação , Proteômica , Células THP-1 , Serina-Treonina Quinases TOR/genética
10.
Elife ; 92020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-33155980

RESUMO

Human ascariasis is a major neglected tropical disease caused by the nematode Ascaris lumbricoides. We report a 296 megabase (Mb) reference-quality genome comprised of 17,902 protein-coding genes derived from a single, representative Ascaris worm. An additional 68 worms were collected from 60 human hosts in Kenyan villages where pig husbandry is rare. Notably, the majority of these worms (63/68) possessed mitochondrial genomes that clustered closer to the pig parasite Ascaris suum than to A. lumbricoides. Comparative phylogenomic analyses identified over 11 million nuclear-encoded SNPs but just two distinct genetic types that had recombined across the genomes analyzed. The nuclear genomes had extensive heterozygosity, and all samples existed as genetic mosaics with either A. suum-like or A. lumbricoides-like inheritance patterns supporting a highly interbred Ascaris species genetic complex. As no barriers appear to exist for anthroponotic transmission of these 'hybrid' worms, a one-health approach to control the spread of human ascariasis will be necessary.


Assuntos
Ascaríase/parasitologia , Ascaris lumbricoides/genética , Ascaris suum/genética , Doenças dos Suínos/parasitologia , Animais , Ascaríase/veterinária , Ascaris lumbricoides/patogenicidade , Ascaris suum/patogenicidade , Ciclo-Oxigenase 1/genética , Feminino , Genoma Helmíntico/genética , Genoma Mitocondrial/genética , Heterozigoto , Humanos , Hibridização Genética/genética , Quênia , Masculino , Filogenia , Polimorfismo de Nucleotídeo Único/genética , Proteoma/genética , Suínos
11.
Mol Biochem Parasitol ; 240: 111317, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32961208

RESUMO

The Global Program to Eliminate Lymphatic Filariasis (GPELF) relies heavily on a rapid diagnostic test (RDT) to a Wuchereria bancrofti circulating filarial antigen (Wb-CFA) to identify endemic areas and for determining when mass drug administration can stop. The antigen contains a carbohydrate epitope that is recognized by monoclonal antibody AD12. Og4C3, a monoclonal antibody that is used in a commercial ELISA for Wb-CFA recognizes the same moiety. Despite its diagnostic importance, little is known about the structure and function of this "AD12 epitope". It is also present on other W. bancrofti glycoproteins and on glycoproteins of other filarial worms, but such antigens are not detected in the sera of individuals with most other filarial infections. We report here functional and biochemical analyses that shed light on the interaction between filarial glycoproteins and AD12 and/or Og4C3. Binding of these monoclonal antibodies to a mammalian glycan array suggests the reactive moiety has structural similarity to terminal ß-d-glucuronic acid in a 1-3 linkage to other hexoses. However, sera collected from individuals with patent W. bancrofti infection had very low or undetectable serum antibodies to the GlcA-containing array glycans. Unlike other filarial glycoproteins, the Wb-CFA is relatively resistant to protease digestion by pronase and trypsin and completely resistant to the mucinase O-sialoglycoprotein endopeptidase (OSGE). The protease resistance of the Wb-CFA may contribute to its consistent detection in Wb-infected sera.


Assuntos
Anticorpos Anti-Helmínticos/imunologia , Anticorpos Monoclonais/imunologia , Antígenos de Helmintos/imunologia , Filariose/diagnóstico , Filariose/imunologia , Polissacarídeos/imunologia , Wuchereria bancrofti/imunologia , Animais , Antígenos de Helmintos/sangue , Ensaio de Imunoadsorção Enzimática , Epitopos/imunologia , Proteínas de Helminto/imunologia , Humanos , Imunoglobulina G/imunologia , Ligação Proteica/imunologia
12.
J Infect Dis ; 221(11): 1805-1815, 2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-31201416

RESUMO

BACKGROUND: Serological assessments for human onchocerciasis are based on IgG4 reactivity against the OV-16 antigen, with sensitivities of 60-80%. We have previously identified 7 novel proteins that could improve serodiagnosis. METHODS: IgG4 responses to these 7 proteins were assessed by luciferase immunoprecipitation (LIPS) and enzyme-linked immunosorbent (ELISA) immunoassays. RESULTS: OVOC10469 and OVOC3261 were identified as the most promising candidates by IgG4-based immunoassays with sensitivities of 53% for rOVOC10469 and 78% for rOVOC3261 while specificity for each was >99%. These 2 antigens in combination with OV-16 increased the sensitivity for patent infections to 94%. The kinetics of appearance of these IgG4 responses based on experimentally infected non-human primates indicated that they were microfilarial- driven. Further, the IgG4 responses to both OVOC10469 and OVOC3261 (as well as to OV-16) drop significantly (p<0.05) following successful treatment for onchocerciasis. A prototype lateral flow rapid diagnostic test to detect IgG4 to both Ov-16 and OVOC3261 was developed and tested demonstrating an overall 94% sensitivity. CONCLUSION: The combined use of rOVOC3261 with OV-16 improved serologic assessment of O. volvulus infection, a current unmet need toward the goal of elimination of transmission of O. volvulus.


Assuntos
Antígenos de Helmintos/imunologia , Onchocerca volvulus/isolamento & purificação , Oncocercose/diagnóstico , Animais , Anticorpos Anti-Helmínticos/sangue , Anticorpos Anti-Helmínticos/imunologia , Biomarcadores , Ensaio de Imunoadsorção Enzimática , Humanos , Imunoglobulina G/sangue , Microfilárias/imunologia , Onchocerca volvulus/imunologia , Oncocercose/imunologia , Pan troglodytes , Primatas/imunologia , Sensibilidade e Especificidade
13.
PLoS Negl Trop Dis ; 13(9): e0007687, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31513587

RESUMO

Lymphatic filariasis (LF), a morbid disease caused by the tissue-invasive nematodes Wuchereria bancrofti, Brugia malayi, and Brugia timori, affects millions of people worldwide. Global eradication efforts have significantly reduced worldwide prevalence, but complete elimination has been hampered by limitations of current anti-filarial drugs and the lack of a vaccine. The goal of this study was to evaluate B. malayi intestinal UDP-glucuronosyltransferase (Bm-UGT) as a potential therapeutic target. To evaluate whether Bm-UGT is essential for adult filarial worms, we inhibited its expression using siRNA. This resulted in a 75% knockdown of Bm-ugt mRNA for 6 days and almost complete suppression of detectable Bm-UGT by immunoblot. Reduction in Bm-UGT expression resulted in decreased worm motility for 6 days, 70% reduction in microfilaria release from adult worms, and significant reduction in adult worm metabolism as detected by MTT assays. Because prior allergic-sensitization to a filarial antigen would be a contraindication for its use as a vaccine candidate, we tested plasma from infected and endemic normal populations for Bm-UGT-specific IgE using a luciferase immunoprecipitation assay. All samples (n = 35) tested negative. We then tested two commercially available medicines known to be broad inhibitors of UGTs, sulfinpyrazone and probenecid, for in vitro activity against B. malayi. There were marked macrofilaricidal effects at concentrations achievable in humans and very little effect on microfilariae. In addition, we observed that probenecid and sulfinpyrazone exhibit a synergistic macrofilaricidal effect when used in combination with albendazole. The results of this study demonstrate that Bm-UGT is an essential protein for adult worm survival. Lack of prior IgE sensitization in infected and endemic populations suggest it may be a feasible vaccine candidate. The finding that sulfinpyrazone and probenecid have in vitro effects against adult B. malayi worms suggests that these medications have promise as potential macrofilaricides in humans.


Assuntos
Brugia Malayi/efeitos dos fármacos , Brugia Malayi/enzimologia , Glucuronosiltransferase/metabolismo , Albendazol/farmacologia , Animais , Antígenos de Helmintos/sangue , Brugia Malayi/imunologia , Brugia Malayi/metabolismo , Quimioterapia Combinada , Filariose Linfática/tratamento farmacológico , Filariose Linfática/prevenção & controle , Feminino , Filaricidas/farmacologia , Glucuronosiltransferase/antagonistas & inibidores , Glucuronosiltransferase/genética , Humanos , Imunoglobulina E/sangue , Intestinos/enzimologia , Microfilárias/efeitos dos fármacos , Movimento , Probenecid/farmacologia , RNA Interferente Pequeno , Sulfimpirazona/farmacologia
14.
PLoS Negl Trop Dis ; 12(12): e0006977, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30540742

RESUMO

BACKGROUND: The study of Onchocerca volvulus has been limited by its host range, with only humans and non-human primates shown to be susceptible to the full life cycle infection. Small animal models that support the development of adult parasites have not been identified. METHODOLOGY/PRINCIPAL FINDINGS: We hypothesized that highly immunodeficient NSG mice would support the survival and maturation of O. volvulus and alteration of the host microenvironment through the addition of various human cells and tissues would further enhance the level of parasite maturation. NSG mice were humanized with: (1) umbilical cord derived CD34+ stem cells, (2) fetal derived liver, thymus and CD34+ stem cells or (3) primary human skeletal muscle cells. NSG and humanized NSG mice were infected with 100 O. volvulus infective larvae (L3) for 4 to 12 weeks. When necropsies of infected animals were performed, it was observed that parasites survived and developed throughout the infection time course. In each of the different humanized mouse models, worms matured from L3 to advanced fourth stage larvae, with both male and female organ development. In addition, worms increased in length by up to 4-fold. Serum and urine, collected from humanized mice for identification of potential biomarkers of infection, allowed for the identification of 10 O. volvulus-derived proteins found specifically in either the urine or the serum of the humanized O. volvulus-infected NSG mice. CONCLUSIONS/SIGNIFICANCE: The newly identified mouse models for onchocerciasis will enable the development of O. volvulus specific biomarkers, screening for new therapeutic approaches and potentially studying the human immune response to infection with O. volvulus.


Assuntos
Biomarcadores/sangue , Biomarcadores/urina , Proteínas de Helminto/sangue , Proteínas de Helminto/urina , Onchocerca volvulus/crescimento & desenvolvimento , Oncocercose/diagnóstico , Animais , Modelos Animais de Doenças , Humanos , Estágios do Ciclo de Vida , Camundongos , Camundongos Endogâmicos NOD , Onchocerca volvulus/isolamento & purificação , Onchocerca volvulus/fisiologia , Oncocercose/sangue , Oncocercose/parasitologia , Oncocercose/urina
15.
PLoS Negl Trop Dis ; 12(10): e0006772, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30296268

RESUMO

Parasitic nematodes produce an unusual class of fatty acid and retinol (FAR)-binding proteins that may scavenge host fatty acids and retinoids. Two FARs from Brugia malayi (Bm-FAR-1 and Bm-FAR-2) were expressed as recombinant proteins, and their ligand binding, structural characteristics, and immunogenicities examined. Circular dichroism showed that rBm-FAR-1 and rBm-FAR-2 are similarly rich in α-helix structure. Unexpectedly, however, their lipid binding activities were found to be readily differentiated. Both FARs bound retinol and cis-parinaric acid similarly, but, while rBm-FAR-1 induced a dramatic increase in fluorescence emission and blue shift in peak emission by the fluorophore-tagged fatty acid (dansyl-undecanoic acid), rBm-FAR-2 did not. Recombinant forms of the related proteins from Onchocerca volvulus, rOv-FAR-1 and rOv-FAR-2, were found to be similarly distinguishable. This is the first FAR-2 protein from parasitic nematodes that is being characterized. The relative protein abundance of Bm-FAR-1 was higher than Bm-FAR-2 in the lysates of different developmental stages of B. malayi. Both FAR proteins were targets of strong IgG1, IgG3 and IgE antibody in infected individuals and individuals who were classified as endemic normal or putatively immune. In a B. malayi infection model in gerbils, immunization with rBm-FAR-1 and rBm-FAR-2 formulated in a water-in-oil-emulsion (®Montanide-720) or alum elicited high titers of antigen-specific IgG, but only gerbils immunized with rBm-FAR-1 formulated with the former produced a statistically significant reduction in adult worms (68%) following challenge with B. malayi infective larvae. These results suggest that FAR proteins may play important roles in the survival of filarial nematodes in the host, and represent potential candidates for vaccine development against lymphatic filariasis and related filarial infections.


Assuntos
Antígenos de Helmintos/imunologia , Brugia Malayi/imunologia , Proteínas de Ligação a Ácido Graxo/imunologia , Filariose/prevenção & controle , Proteínas de Ligação ao Retinol/imunologia , Vacinas Sintéticas/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Anticorpos Anti-Helmínticos/sangue , Antígenos de Helmintos/química , Dicroísmo Circular , Modelos Animais de Doenças , Proteínas de Ligação a Ácido Graxo/química , Feminino , Gerbillinae , Humanos , Imunoglobulina E/sangue , Imunoglobulina G/sangue , Masculino , Carga Parasitária , Ligação Proteica , Estrutura Secundária de Proteína , Proteínas de Ligação ao Retinol/química , Resultado do Tratamento , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/isolamento & purificação , Vitamina A/metabolismo
16.
PLoS Negl Trop Dis ; 12(4): e0006404, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29668679

RESUMO

A number of features at the host-parasite interface are reminiscent of those that are also observed at the host-tumor interface. Both cancer cells and parasites establish a tissue microenvironment that allows for immune evasion and may reflect functional alterations of various innate cells. Here, we investigated how the phenotype and function of human monocytes is altered by exposure to cancer cell lines and if these functional and phenotypic alterations parallel those induced by exposure to helminth parasites. Thus, human monocytes were exposed to three different cancer cell lines (breast, ovarian, or glioblastoma) or to live microfilariae (mf) of Brugia malayi-a causative agent of lymphatic filariasis. After 2 days of co-culture, monocytes exposed to cancer cell lines showed markedly upregulated expression of M1-associated (TNF-α, IL-1ß), M2-associated (CCL13, CD206), Mreg-associated (IL-10, TGF-ß), and angiogenesis associated (MMP9, VEGF) genes. Similar to cancer cell lines, but less dramatically, mf altered the mRNA expression of IL-1ß, CCL13, TGM2 and MMP9. When surface expression of the inhibitory ligands PDL1 and PDL2 was assessed, monocytes exposed to both cancer cell lines and to live mf significantly upregulated PDL1 and PDL2 expression. In contrast to exposure to mf, exposure to cancer cell lines increased the phagocytic ability of monocytes and reduced their ability to induce T cell proliferation and to expand Granzyme A+ CD8+ T cells. Our data suggest that despite the fact that helminth parasites and cancer cell lines are extraordinarily disparate, they share the ability to alter the phenotype of human monocytes.


Assuntos
Brugia Malayi/imunologia , Filariose/imunologia , Evasão da Resposta Imune , Monócitos/imunologia , Monócitos/parasitologia , Neoplasias/imunologia , Animais , Brugia Malayi/genética , Brugia Malayi/fisiologia , Linhagem Celular Tumoral , Filariose/parasitologia , Humanos , Interleucina-10/genética , Interleucina-10/imunologia , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Ativação Linfocitária , Fagocitose , Linfócitos T/imunologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
17.
Trends Parasitol ; 34(3): 179-183, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29249363

RESUMO

Advancements in genome sequencing have led to the rapid accumulation of uncharacterized 'hypothetical proteins' in the public databases. Here we provide a community perspective and some best-practice approaches for the accurate functional annotation of uncharacterized genomic sequences.


Assuntos
Genoma Helmíntico/genética , Helmintos/genética , Animais , Genômica/tendências , Proteínas de Helminto/genética , Anotação de Sequência Molecular , Análise de Sequência de RNA
18.
Trends Parasitol ; 34(1): 80-90, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29031509

RESUMO

Filarial infections of humans cause some of the most important neglected tropical diseases. The global efforts for eliminating filarial infections by mass drug administration programs may require additional tools (safe macrofilaricidal drugs, vaccines, and diagnostic biomarkers). The accurate and sensitive detection of viable parasites is essential for diagnosis and for surveillance programs. Current community-wide treatment modalities do not kill the adult filarial worms effectively; hence, there is a need to identify and develop safe macrofilaricidal drugs. High-throughput sequencing, mass spectroscopy methods and advances in computational biology have greatly accelerated the discovery process. Here, we describe post-genomic developments toward the identification of diagnostic biomarkers and drug targets for the filarial infection of humans.


Assuntos
Sistemas de Liberação de Medicamentos/tendências , Filariose/prevenção & controle , Genoma Helmíntico/genética , Nematoides/genética , Animais , Mineração de Dados , Filariose/diagnóstico , Filariose/tratamento farmacológico , Filariose/parasitologia , Filaricidas/normas , Filaricidas/uso terapêutico , Humanos , Nematoides/efeitos dos fármacos
19.
J Infect Dis ; 216(6): 736-743, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28934436

RESUMO

We have developed a serologically based immunophenotyping approach to study Onchocerca volvulus (Ov) population diversity. Using genomic sequence data and polymerase chain reaction-based genotyping, we identified nonsynonymous single-nucleotide polymorphisms (SNPs) in the genes of 16 major immunogenic Ov proteins: Ov-CHI-1/Ov-CHI-2, Ov16, Ov-FAR-1, Ov-CPI-1, Ov-B20, Ov-ASP-1, Ov-TMY-1, OvSOD1, OvGST1, Ov-CAL-1, M3/M4, Ov-RAL-1, Ov-RAL-2, Ov-ALT-1, Ov-FBA-1, and Ov-B8. We assessed the immunoreactivity of onchocerciasis patient sera (n = 152) from the Americas, West Africa, Central Africa, and East Africa against peptides derived from 10 of these proteins containing SNPs. Statistically significant variation in immunoreactivity among the regions was seen in SNP-containing peptides derived from 8 of 10 proteins tested: OVOC1192(1-15), OVOC9988(28-42), OVOC9225(320-334), OVOC7453(22-36), OVOC11517(14-28), OVOC3177(283-297), OVOC7911(594-608), and OVOC12628(174-188). Our data show that differences in immunoreactivity to variant antigenic peptides may be used to characterize Ov populations, thereby elucidating features of Ov population biology previously inaccessible because of the limited availability of parasite material.


Assuntos
Genética Populacional , Proteínas de Helminto/genética , Imunofenotipagem , Onchocerca volvulus/genética , Oncocercose/diagnóstico , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Anticorpos Anti-Helmínticos/sangue , Formação de Anticorpos , Antígenos de Helmintos/sangue , Criança , DNA de Protozoário/genética , Feminino , Técnicas de Genotipagem , Humanos , Masculino , Pessoa de Meia-Idade , Onchocerca volvulus/isolamento & purificação , Oncocercose/imunologia , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Adulto Jovem
20.
J Clin Microbiol ; 55(9): 2671-2678, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28637911

RESUMO

Antigen-based immunoassays are currently needed for point-of-care quantification of Loa loa microfilariae (mf). Coupling transcriptomic approaches with bioinformatic analysis, we have identified 11 specific putative proteins (coding mRNAs) with potential utility as biomarkers of patent (mf + ) L. loa infection. We successfully developed antigen capture immunoassays to quantify 2 (LOAG_14221 and LOAG_15846) of these proteins in individual plasma/serum samples. Of the 2 quantifiable circulating biomarkers, LOAG_14221 showed the highest degree of specificity, particularly with a monoclonal antibody-based immunoassay. Moreover, the levels of LOAG_14221 in L. loa mf + patients were positively correlated to the mf densities in the corresponding blood samples (r = 0.53 and P = 0.008 for polyclonal assay; r = 0.54 and P = 0.004 for monoclonal assay). Thus, LOAG_14221 is a very promising biomarker that will be exploited in a quantitative point-of-care immunoassay for determination of L. loa mf densities.


Assuntos
Antígenos de Helmintos/sangue , Loa/imunologia , Loíase/diagnóstico , Microfilárias/imunologia , Proteínas de Protozoários/sangue , Animais , Anticorpos Monoclonais/imunologia , Antígenos de Helmintos/imunologia , Biomarcadores/sangue , Biologia Computacional , Perfilação da Expressão Gênica , Humanos , Imunoensaio/métodos , Loíase/imunologia , Loíase/parasitologia , Onchocerca volvulus/imunologia , Sistemas Automatizados de Assistência Junto ao Leito , Proteínas de Protozoários/imunologia , Wuchereria bancrofti/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...